kinetic instabilities
ELECTRON PHYSICS IN KELVIN-HELMHOLTZ INSTABILITY IN MAGNETIZED PLASMAS
Rolled-up vortices associated to the Kelvin-Helmholtz instability (KHI) have been detected by in-situ observations around the Earth, Saturn and Mercury magnetospheres due to the interaction with the solar wind. KHI in magnetized plasmas have been widely studied numerically in the framework of a fluid, hybrid, and full kinetic approach, while only very few studies have focused on the physics of electrons because of computational constraints. In this work we present a full kinetic particle in cell study of the KHI spanning a range of scales going from fluid to electron scales. The simulation is initialized with an extended fluid equilibrium including finite ion Larmor radius effects. Our large-scale configuration includes two-possible alignment of the vorticity with the background magnetic field each one corresponding to the interaction of the solar wind with the dawn and dusk side of a planet. We discuss electron heating and acceleration by analyzing temperature anisotropy and particle distribution functions. Two fluid simulations have suggested that KHI instability can lead to the onset of the mirror instability. Our full kinetic approach confirms such hypothesis. We discuss the formation of mirror modes in our simulations.