Alexander Schekochihin
Alexander Schekochihin

Partition of turbulent energy between particle species in astrophysical plasmas

Alexander Schekochihin
alex.schekochihin@physics.ox.ac.uk
University of Oxford
Perhaps the most popular and most productive route by which the theoretical machinery of fusion science has been ported to astrophysical plasmas was the application of gyrokinetic theory to the problem of collisionless plasma turbulence in accretion flows and in the heliosphere, in particular to the question of how energy is partitioned between species (ions and electrons) when this turbulence is thermalised. After many years of promising, but perhaps not entirely conclusive advances in this area, the latest news is that we finally have some quantitative grasp on the answer: GK turbulence promotes disequilibration of species: at high beta, ions are preferentially heated; at low beta, electrons are. This conclusion is supported by GK simulations, which are finally able to give us a heating vs. beta and Ti/Te curve [Kawazura et al. 2019, PNAS 116, 771] and, in the case of low beta, also by relatively rigorous theory [Schekochihin et al. 2019, JPP in press/arXiv:1812.09792]. I will review this progress, spell out caveats (of course there are caveats), and describe the next steps, including some theoretical progress on the high-beta regime.