Topological mode selection

Henning Schomerus
Department of Physics, Lancaster University, Lancaster LA1 4YB, UK

Topological photonics aims to replicate fermionic symmetries as feats of precision engineering. Here I show how to enhance these systems via effects such as gain, loss and nonlinearities that do not have a direct electronic counterpart. This leads to a topological mechanism of mode selection [1,2,3], formation of compactons in flat band condensates [4], and topological excitations in lasers when linearized around their working point [5]. The resulting effects show a remarkable practical robustness against disorder, which arises from the increased spectral isolation of the manipulated states.

[1] Topologically protected midgap states in complex photonic lattices, H. Schomerus, Opt. Lett. 38, 1912 (2013).

[2] Selective enhancement of topologically induced interface states in a dielectric resonator chain, C. Poli, M. Bellec, U.Kuhl, F. Mortessagne, H. Schomerus, Nat. Commun. 6, 6710 (2015).

[3] Topological Hybrid Silicon Microlasers, H. Zhao et al., Nat. Commun. 9, 981 (2018)

[4] Exciton-polaritons in a two-dimensional Lieb lattice with spin-orbit coupling, C. E. Whittaker et al., Phys. Rev. Lett. 120, 097401 (2018).

[5] Topological dynamics and excitations in lasers and condensates with saturable gain or loss, S. Malzard, E. Cancellieri, and H. Schomerus, Opt. Express 26, 22506-22518 (2018).