Energy cascade rate in compressible MHD and Hall-MHD flows: spacecraft observations in the near-Earth space vs theoretical predictions

Fouad Sahraoui
fouad.sahraoui@lpp.polytechnique.fr
LPP/CNRS - Ecole Polytechnique – Sorbonne Université - Univ. Paris-Sud - Observatoire de Paris, Université Paris-Saclay, Palaiseau, 91128, France

F. Sahraoui (1), L. Z. Hadid (2), N. Andrés (1,3), F. Galtier (1,4), S. Y. Huang (5), R. Ferrand (1), and S. Banerjee (6)

(1) LPP, CNRS - Ecole Polytechnique – Sorbonne Université - Univ. Paris-Sud - Observatoire de Paris, Université Paris-Saclay, Palaiseau, 91128, France

(2) Swedish Institute of Space Physics, Uppsala, Sweden

(3) Instituto de Astronomia y Fisica del Espacio, UBA-CONICET, CC. 67, suc. 28, 1428, Buenos Aires, Argentina

(4) Institut Universitaire de France

(5) School of Electronic Information, Wuhan University, Wuhan, China

(6) Indian Institute of Technology, IIT, Kanpur, India

Compressible turbulence has been a subject of active research within the space physics community over the past years. It is thought to be essential for understanding the physics of the solar wind (for instance the heating of the fast wind), planetary magnetospheres and the interstellar medium (star formation). Using recently derived exact laws of compressible isothermal MHD and the THEMIS and CLUSTER spacecraft data we investigate the physics of the fast and slow solar winds and the Earth magnetosheath. We emphasize the role of density fluctuations in enhancing both the energy cascade rate and the turbulence spatial anisotropy by analyzing different types of turbulent fluctuations (magnetosonic and Alfvénic-like), and show how kinetic instabilities can regulate the energy cascade rate. This has motivated further investigation of the sub-ion scale cascade using MMS high time resolution data and the exact laws of the Hall-MHD model (see talk by Andrés et al.). Preliminary results on the estimation of the fluid cascade rate at sub-ion and its possible connection to kinetic dissipation will be discussed.