Optimal Analog Data Compression with Reconfigurable Wave-Chaotic Systems

Philipp Del_Hougne
Institut de Physique de Nice
Propagation of waves through wave-chaotic systems completely scrambles incident wave fronts. Recent computational imaging devices leverage this property to take compressed measurements of multiple input data streams. Here, we demonstrate that carefully configured wave-chaotic systems can optimally compress multiple incoming data streams. Using tunable metasurfaces, we reconfigure the boundary conditions of chaotic microwave cavities and report an experimental in-situ proof of the concept.