Multisection semiconductor laser for optical coherence tomography

Alexis Verschelde
Université Côte d'Azur, INPHYNI, CNRS, 1361 route des lucioles, 06560 Valbonne, France

Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging technique of scattering media used in applications such as medical diagnostics and industrial testing in manufacturing lines. Swept Source-OCT (SS-OCT) requires a laser whose wavelength can be rapidly and continuously swept over a broad spectral range. Nowadays, most swept source lasers (SSL) technologies rely on mechanical filters whose sweeping speed is limited to 100 kHz. Multisection semiconductor lasers are electrically tunable lasers that offer the possibility to reach sweeping speeds up to the MHz regime. The technology is based on semiconductor slot mirrors having comb reflectivity spectra. The spacing of the comb spectral lines is imposed by the periodicity of the slots. The electrical injection of these mirror sections allows to shift the reflectivity spectra by the variation of the refractive index of the medium. By ensuring that the period of the slots are different between the front and back mirrors, two incommensurate comb reflection spectra can be formed. The Vernier effect occurs due to the interference of the two offset combs when independent electrical tuning of the two mirror sections is realised. This Vernier effect is responsible for wide and fast frequency sweeps. However such SS lasers based on the Vernier effect display mode hops during the laser operation that induce a loss of coherence.

In this work, we analyse the spectral features of semiconductor multisection slot lasers when the mirror sections are electrically tuned. Based on our cartographies of the laser emission wavelength as a function of the mirrors currents, we intend to provide an electrical path for a rapid and quasi-continuous wavelength sweep over a broad bandwidth. This work paves the way for further explorations of the opto-electronic control of the multisection lasers coherence during a full wavelength sweep.