Investigating properties of solar wind turbulence at sub-ion scales with in situ data and numerical simulations

Lorenzo Matteini
LESIA, Observatoire de Paris, CNRS, 5 Pl. Jules Janssen, 92195 Meudon CEDEX, France

We investigate the transition of the solar wind turbulent cascade from MHD to sub-ion range by means of in situ observations and hybrid numerical simulations. First, we focus on the angular distribution of wave-vectors in the kinetic range, between ion and electron scales, using Cluster magnetic field measurements. Observations suggest the presence of a quasi-2D gyrotropic distribution around the mean field, confirming that turbulence is characterised by fluctuations with $k_\perp>>k_|$ in this range; this is consistent with what is usually found at larger MHD scales, and in good agreement with our hybrid simulations.

We then consider the magnetic compressibility associated with the turbulent cascade and its evolution from large-MHD to sub-ion scales. The ratio of field-aligned to perpendicular fluctuations, typically low in the MHD inertial range, increases significantly when crossing ion scales and its value in the sub-ion range is a function of the total plasma beta, with higher magnetic compressibility for higher beta. Moreover, we observe that this increase has a gradual trend from low to high beta in the data; this behaviour is well captured by the numerical simulations. The level of magnetic field compressibility that is observed in situ and in the simulations is in fairly good agreement with the prediction based on kinetic Alfvén waves (KAW), especially at high beta, suggesting that in the kinetic range explored the turbulence is supported by KAW-like fluctuations.